

M.Sc. (F) Mathematics

Model Paper - A

Paper -I (Analysis and Advanced Calculus)

Time allowed : 3 Hrs

Max. Marks: 100

Note : Attempt any five question in all. Select at least one from each unit. Each question carry equal marks

<u>UNIT-I</u>

- 1. (a) Define normed linear space with example. If X be a normed linear space and $x, y \in X$ than show that $||x|| ||y|| \le ||x y||$
 - (b) Define bounded linear transformation. Prove that a linear mapping T of a normed linear space E into a normed linear space F is continuous if T is bounded.

or

- 2. (a) Define weak and strong convergence. Show that in a finite dimensional space the motions of weal and strong convergences are equivalent.
 - (b) Define equivalent norms. Prove that on a finite dimensional linear spaces on X all norms are equivalent.

<u>UNIT-II</u>

- 3. (a) State and prove closed graph theorem.
 - (b) Let B be a banach spare and N be a normed linear space over the same field and let $\{T_i\}$ is a non empty set of continuous linear transformation of B into N with the property that $\{T_i(x)\}$ is a bounded of N for each vector in B then $||T_i||$ is a bounded set of real numbers.

or

- 4. (a) Define inner product space and prove that cauchy schwarz inequality for an inner product space.(b) Define Hilbert space with example.
 - Prove that a closed convex subset M of a Hilbert space H contains a unique vector of smallest norm.

<u>UNIT-III</u>

- 5. (a) Let M and N are closed linear subspaces of a Hilbert space H s.t. M+N, then prove that the linear subspace M+N is also closed.
 - (b) If $\{e, e_2 _ e_n\}$ be a finite orthonormal set in a helbert space H then prove that $\begin{array}{c}n\\\Sigma\\i=1\end{array} | < x, ei > |^2 \le ||x||^2 \text{ for each vector } x \in H
 \end{array}$

or

6. (a) State and prove piesz representation theorem for Hilbert space.

(b) An operator T on a Hilbert space H is unilary iff T is an isometric isomorphism of H onto itself.

UNIT-IV

- 7. (a) If P is a projection on a Hilbert space H with range M and null space N, then prove that M+N if and only if P is self ad joint and in that case prove that $N = M^{\perp}$
 - (b) Define invariance of a closed linear space of a flibert space under an operator T. Prove that a closed linear subspace M of a Hilbert space H is invariant under an operator T iff M^{\perp} is invariant under T.

or

8. (a) If $f: R \to Y$ be a continuous function and f is differentiable on the interval [a, b] of R, $||(t)|| \le M$

for all $t \in (a, b)$ then prove that $||f(b) - f(b)|| \le M (b - a)$

(b) Let X and Y be banach spaces pver tje same field of scalecs K and U be an open subtract of X. If $F: U \rightarrow Y$ is differentiable at $x \in U$, then all the directional derivatives of f exist at x and

$$D_a f(x) = Df(x)a$$

9. (a) If I be an open internal in R containing [0,1] and $v: I \rightarrow \times$ is (n + 1) times continuously differentiable function of a single variable t then peave that

$$v(1) - v(0) - v'(0) - \frac{v''(0)}{2!} - \frac{v^n(0)}{n!} = \int_0^t \frac{(1-t)^n}{n!} v^{n+1}(t) dt$$

10. State and prove existence theorem for approximate solution.

Time allowed : 3 Hrs

Max. Marks: 100

Note : Attempt any five question in all. Select at least one from each unit. Each question carry equal marks

<u>UNIT-I</u>

- (a) If M be a closed linear subspace of a normed linear space N and the norm of the corct x + M in the quotient space ^N/_M is defined as
 ||x + M|| = Inf. {||x + m||/m ∈ M} then ^N/_M is a normed linear space.

 - (b) Let N and N' be normed linear spaces and $T: N \to N'$ be a linear Transformation. Then T^{-1} exists and is continuous on its domain iff there exist k > 0 s.t. $k||x|| \le T ||x||, \forall x \in N$

or

2. Prove that a normed linear space E is a banach space iff every absolutely convergent series in E converges in \in . Also show that

 $\left\| \sum_{n=1}^{\infty} xn \right\| \le \sum_{n=1}^{\infty} \|x_n\|$

<u>UNIT-II</u>

- 3. (a) State and prove open mapping theorem
 - (b) If M is a closed linear subspace of a normed linear space N and x_0 is a vector not in M then \exists a functional f_0 in N s.t. f_0 (M) = 0 and $f_0(x_0) \neq 0$

or

4.(a) Define inner product space with example. If $\langle x, y \rangle$ is an inner product on a linear space \in than prove that $||x|| = \langle x, x \rangle^{1/2}$ define a norm on \in

(b) Let M be a closed linear subspace of a Hilbert space H. Let x be a vector not in M and let d be the distance from x to M. Then there exist a unique vector y_o in M s.t $||x - y_o|| d$

<u>UNIT-III</u>

- 5. (a) State and prove projection theorem in Hilbert space.
 - (b) Let H be a Hilbert space and f be an arbitrary functional in H, then there exists a unique vector y in H s.t. $f = f_v i.e. f(x) = \langle x, y \rangle, \forall x \in H$,

6. If $\{e_1, e_2, \dots, e_n\}$ be a finite orthonormal set in a Hilbert space H and x is any vector in H then prove that $\left\| x - \sum_{i=1}^{n} \lambda i e i \right\|$ has its minimum value when $\lambda_i = \langle xi, ei \rangle$ and $\sum_{i=1}^{n} |\langle x, ei \rangle|^2 \le \|x\|^2$ also show that $x - \sum_{i=1}^{n} \langle x, ei \rangle e_i \perp e_j$

UNIT-IV

- 7. (a) If P is the projection on the closed subspace M of H, then $x \in M$ iff $P_x = x$
 - (b) If T is normal, then prove that the eigen spaces corresponding to distinct eigen values of T are pair-wise normal.

or

- 8. (a) Let f be a continuous function on an open subset U of a Banach space X into a Banach space Y. Let a and b be sub distinct points of Us.t. the segment [a,b] is contained in U, and F be differentiable at all points of [a,b]. Then prove that
 ||f(b) f(a)|| ≤ ||b a|| sub {||Df(x)||/x ∈ [a,b]}
 - (b) If T is a normal operator on a Hilbert space H, then x is an eigen vector of T with eigen value λ
 - iff x is an eigenvector of T with eigen value $\overline{\lambda}$

UNIT-V

9. (a) If $f : W \to Y$ is twice differentiable at the point $a \in W$ then prove that the second derivative

 $D^2 f(a) \in L(XXX, Y)$ is pilinear symmetric map.

(b) State and prove implicit function theorem.

10. Define regulated function. Let f be a regulated function on a compact interval [a, b] of R into a Banach space X over A and g be a continuous linear map of X into a Banach space Y over A. Then got is used as $\int_{a}^{b} (axt) = a \left(\int_{a}^{b} c x \right)$

is regulated and
$$\int_{a} (got) = g(\int_{a}^{b} f)$$