
 
 
 
 

Biyani Girls college ,Jaipur 

Model Paper-A (M.Sc. I)  

Subject:Mathematics 

Paper : VIII (Integral transform and integral equation) 

Max Marks:  100                                                                                                       Max Time: 2:30 hrs 

Attempt any five questions in all selecting atleast one question from each unit. 

 UNIT-I 
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stands for Laplace transform.            
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    (b)Evaluate Lapalce transform of J1(x) ,where J1(x) is the Bessel’s function of order one .Hence 

evaluate Lapalce transform of xJ1(ax) )0(a .                    10 

2. (a) State and prove convolution theorem for Laplace Transform and apply it to find 
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    (b) State complex inversion formula for inverse Laplace Transform and use it to find     
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                                                                          UNIT-II 

3. (a)Find the Fourier Transfrom of f(x) where:  
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    (b) State Parseval’s identity for Fourier cosine transform. Use this identity to evaluate       
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     (b) If pGpF  are Mellin transform of functions f(x) and g(x) then find Mellien transform of 
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UNIT-III 

5a. State and prove Parseval theorem for Hankel transform.                             2+8 

b. Find the Hankel transform of  0)0(3)0(04 '
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6a. Convert the differential equation 0
2
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with conditions y(0)=0, y(1)=0 into Fredholm 

integral equation of second kind. Also recover the original differential equation from the integral equation 

so obtained.                                                   8+2 

  b. Find the eigen values and eigen functions of the homogenous integral equation:- 
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UNIT-IV 

7a. Form an integral equation correspondingto the differential equation:- 
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integral equation so obtained.                                      8+2 



 
 
 
 

b. Find the eigrn value and eigen functions for the integral equation 
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8a. Solve the integral equation :- 
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For what value of does the solution not exist?                8+2 

b. Solve the integral equation : 
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 UNIT-V 

9a. State Hilbert –Schmidt theorem and use it to solve: 
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10a. Using Fredholm First theorem Solve the integral equation  
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b. Solve by Laplace transform method, the integral equation  
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