Biyani Girls college ,Jaipur

Model Paper-A (M.Sc. Final)

Subject:Mathematics

Paper : Advance Numerical Analysis(XII)

Max Marks: 100

Max Time: 2:30 hrs

Attempt any five questions in all selecting at least one question from each unit.

UNIT-I

1.a. The multiple roots ξ of multiplicity two of the equation $f(x)=0$ is to be determined. We consider the multipoint method :-
$x_{k+1}=x_{k}-\frac{1}{2} \frac{\left(f\left(x_{k}+2 f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right)\right)\right.}{f^{\prime}\left(x_{k}\right)}$ Show that the iteration method has third order rate of convergence. Hence solve the equation $9 x^{4}+30 x^{3}+34 x^{2}+30 x+25=0$, with $x_{0}=-1.4$ Correct to three decimal places.10
b. Apply Aitken's Δ^{2}-method to find a root of the equation:- $\sin ^{2} x=x^{2}-1$ 10

2a. Discuss the Newton-Raphson method for a system of two non-linear equations in two unknowns. 10
b. Find a real solution of the equation: $x^{3}=y+100 ; y^{3}=x+150$ by general iteration method for a system of two non-linear equations in two unknowns.

10

UNIT-II

3a. Using Bairstow's method obtain the quadratic factor of the following equation:-
(Perform two iterations) $x^{4}-8 x^{3}+39 x^{2}-62 x+50=0$ with $(\mathrm{p}, \mathrm{q})=(0,0)$
b.Solve the equation :- $x^{3}-5 x^{2}-17 x+20=0$ by Graffee's method (squaring three times)

4a.Using Doolittle's Method ,Solve the following system of equations:-
$2 x+3 y+z=9 ; x+2 y+3 z=6 ; 3 x+y+2 z=8$
b. Solve the System of equations:- $2 x-13 y-3 z=49 ; 5 x-6 y+17 z=25 ; 11 x+2 y-4 z=-31$ using relaxation method.

UNIT-III

5a. What is power method for producing the dominant eigenvalue and eigenvector of a matrix?Apply this method to find the dominant eigenvalue and eigenvector of the matrix: $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$.
b. Use Jacobi's method to find all the eigenvalues and eigenvectors of matrix:- $\left[\begin{array}{ccc}1 & \sqrt{3} & 4 \\ \sqrt{3} & 4 & \sqrt{3} \\ 4 & \sqrt{3} & 1\end{array}\right]$

6a. Obtain a linear and quadratic polynomial appoximaition to the function : $f(x)=x^{3}$ on the interval $[0,1]$ using the least square approximation w.r.t. weight function $\mathrm{W}(\mathrm{x})=1$. 10
b. Prove the following recurrence relation for the Chebyshev polynomial of the first kind:
$T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)$ Using the Chebyshev polynomial ,obtain the least squares approximation of second degree for $f(x)=x^{4}$ on the interval $[-1,1]$.

UNIT-IV

7a. Use fourth order runge Kutta method to solve the following initial value problem:-

$$
\frac{d y}{d t}=\frac{t}{2 y}, t \in[1,1.2] \quad y(1)=2 \text { Compare your computed solution with the exact solution. }
$$

b. Derive Millen's method to solve an initial value problem:-

$$
\begin{equation*}
\frac{d y}{d t}=f(t, y), t \in\left[t_{0}, b\right] \quad y\left(t_{0}\right)=y_{0} \tag{10}
\end{equation*}
$$

8a. Use Adsoms-Moulton method to compute the solution of the initial value problem:-

$$
\begin{equation*}
\frac{d y}{d t}=y-t^{2}, t \in[0,1] \quad y(0)=1 \tag{10}
\end{equation*}
$$

b.Compute $\mathrm{y}(0.05)$ by Rungr-Kutta method where $\mathrm{y}(\mathrm{t})$ is the solution of the following initial value problem:- $\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+y=0 \quad y(0)=0, y^{\prime}(0)=1$

UNIT-V

9a. Disscuss finite -difference method of order two for the following boundary value problem

$$
\frac{d^{2} y}{d x^{2}}=f\left(x, y, \frac{d y}{d x}\right) ; \quad x \in[a, b] \text { withtheboudaryconditions } y(a)=A \quad y(b)=B
$$

b. Find the solution of the following boundary value problem

$$
\frac{d^{2} y}{d x^{2}}=y+x \quad x \in[0,1] \text { withtheboudary conditions } y(0)=0, y(1)=0 \text { with } \mathrm{h}=0.25 \text { using }
$$

Numerov method. 10

10a. Solve the boundary value problem
$\frac{d^{4} y}{d x^{4}}=1$ withtheboudaryconditions $y(0)=y^{\prime}(0)=y(1)=y^{\prime}(1)=0$ with $\mathrm{h}=0.25$ using second order difference method. 10
b. Solve the boundary value problem $\frac{d^{2} y}{d x^{2}}=y$ with the boudaryconditions $y(0)=0 \quad y(1)=1$ by Shooting method.

