Biyani Girls college ,Jaipur

Model Paper-B (M.Sc. Final)

Subject:Mathematics

Paper : Advance Numerical Analysis(XII)

Max Marks: 100

Max Time: 2:30 hrs

Attempt any five questions in all selecting at least one question from each unit.

UNIT-I

1. Describe the iteration method for finding root of the equation $f(x)=0$. Explain merits and demerits of the method.Explain Aitken's Δ^{2}-method for the acceleration of convergence. Hence find the root of the equation $e^{x} \tan x=1$ correct upto four decimal places .Apply Δ^{2}-method.
2.(a) Perform two iterations of Muller's method to find the root of the equation:- $x^{3}-x-1=0$

Take $x_{0}=-1, x_{1}=0.5, x_{2}=1$ as initial approximations. 10
b. Discuss Newton Raphson method for simultaneous non-linear equations and use it to solve the following equations:- $x^{2}-y^{2}=4$ and $x^{2}+y^{2}=16$.

UNIT-II

3a.Perform two iterations of Birge - Vieta method to compute a root of the equation

$$
\begin{equation*}
x^{3}-5 x^{2}-17 x+20=0 \tag{10}
\end{equation*}
$$

b. Use Graeff's root squaring method to compute all the roots of the equation $x^{3}-3 x^{2}-6 x+8=0$

4a. Solve the given system of equations using Choleskey method:-

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 8 & 22 \\
3 & 22 & 82
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
5 \\
6 \\
-10
\end{array}\right]
$$

b. Solve the given system of equations by the conjugate gradient method (perform two iterations only):-

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
1 & 6 & -2 \\
4 & -3 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-4 \\
5
\end{array}\right]
$$

UNIT-III

5a. Reduce the following matrix to tridiagonal from by Given's method:- $\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -1 \\ 2 & -1 & 1\end{array}\right]$ and use Sturm sequence to find the eigen values. 10
b. Find the eigenvalues of the matrix $\mathrm{A}=\left[\begin{array}{ccc}2 & -4 i & 0 \\ 4 i & 2 & 0 \\ 0 & 0 & 4\end{array}\right]$

6a. Determine the least squares approximation of the type $a x^{2}+b x+c$ to the function:-
$\frac{1}{1+x^{2}}$ in the range $-1 \leq x \leq 1$

10

b. Using the Chebyshev polynomials, obtain the least squares approximations of second degree for the function $f(x)=x^{3}+x^{2}+3$, where $x \in[-1,1]$. 10

UNIT-IV

7a. Derive Taylor's series approximation formula and hence find out the solution of the equation ;-

$$
\begin{equation*}
x y^{\prime}=x-y, \quad y(2)=2 \text { at } x=2.1 \tag{10}
\end{equation*}
$$

b. Apply Fourth order Runge- Kutta method to:

$$
\frac{d y}{d x}=-x y^{2}, y(0)=1 \text { take } \mathrm{h}=0.02 \text { and determine approximation to } \mathrm{y}(0.2) \text { and } \mathrm{y}(0.4) \text {. }
$$

8a. Solve the following equation by Milne's predictor -corrector method :-

$$
\frac{d y}{d t}=\frac{t}{y^{\prime}}, y(1)=2, t \in[1,1.4]
$$

UNIT-V

9a. Soleve the boundary value problem :-

$$
\frac{d^{2} y}{d x^{2}}=-8\left(\sin ^{2} \pi x\right) y, x \in[0,1]
$$

$y(0)=y(1)=1$ using second order finite difference method with step size $\mathrm{h}=0.25$.

10
b. Write a brief note on finite difference approximation to solve the boundary value problems. 10

10a. Solve the boundary value problem

$$
\frac{d^{2} y}{d x^{2}}=x y, \quad x \in[0,1] \quad y(0)+y^{\prime}(0)=1, \quad y(1)=1 \quad(\text { take } h=1 / 3)
$$

b. Explain the essence of shooting method to solve a boundary value problem:-

$$
\frac{d^{2} y}{d x^{2}}=f(x, y), x \in[a, b] \quad y(a)=A, \quad y(b)=B
$$

