Biyani Girls college ,Jaipur

Model Paper-B (M.Sc. I)

Subject:Mathematics

Paper : I(Abstract Algebra)
Max Marks:100
Max Time: 2:30 hrs

Attempt any five questions in all selecting atleast one question from each unit.

UNIT-I

1.a Let H be a subgroup of G and K be a normal subgroup of G then show that $: \frac{H K}{K} \cong \frac{H}{H \cap K}$

Further suppose K_{1} is some other normal subgroup of G s.t. $H \cap K=H \cap K_{1}$ then $\frac{H K}{K} \cong \frac{H K_{1}}{K_{1}} .10$
b. A group G is an internal direct product of subgroup $\mathrm{H}_{1}, \mathrm{H}_{2} \ldots \ldots \ldots \ldots \ldots . \mathrm{H}_{\mathrm{n}}$ iff
(i) $\mathrm{G}=\mathrm{H}_{1}, \mathrm{H}_{2} \ldots \ldots \ldots \ldots \ldots . \mathrm{H}_{\mathrm{n}}$ (ii) $\mathrm{H}_{1}, \mathrm{H}_{2} \ldots \ldots \ldots \ldots \ldots . \mathrm{H}_{\mathrm{n}}$ are all normal subgroup of G and (iii) $H_{i} \cap\left(\mathrm{H}_{1} \mathrm{H}_{2} \ldots \ldots \ldots . \mathrm{H}_{\mathrm{i}-1} \mathrm{H}_{\mathrm{i}+1} \ldots \ldots \ldots . \mathrm{Hn}\right)=e_{-}$ 10

2a.Let R be an Euclidian ring and $a_{o} \in R$. Then prove that the principal ideal $A=<a_{o}>$ of R is maximal ideal of R Iff a_{o} is a prime element of R. 10
b. Let M be an R - module and let N and K be sub module of M with $N \subseteq K$ then prove that
$(M / N) \mid(K / N) \cong M / K$. 10

UNIT-II

3a. Let V be a finite dimensional vector space over a field F and W be any subspace of V. If $A(W)$ denotes annihilator of W,then prove that: $\operatorname{dim} A(W)=\operatorname{dim} V-\operatorname{dim} W$.
b. Let M be an R -Module .Then show that M is the direct sum of its sub modules $\mathrm{N}_{1}, \mathrm{~N}_{2} \ldots \ldots \ldots \ldots \mathrm{~N}_{\mathrm{K}}$ Iff
(i) $M=\mathrm{N}_{1}+\mathrm{N}_{2}+\ldots \ldots \ldots \ldots \ldots+\mathrm{N}_{\mathrm{K}}$
(ii) $N_{i} \cap\left(\mathrm{~N}_{1}+\mathrm{N}_{2}+\ldots \ldots \ldots+\mathrm{N}_{\mathrm{i}-1}+\mathrm{N}_{\mathrm{i}+1} \ldots \ldots \ldots+\mathrm{N}_{\mathrm{K}}\right)=\{\overline{0}\}$ for all $\mathrm{i}=1,2 \ldots \ldots . . \mathrm{k}_{10}$

4a. Let V and V^{\prime} be vector spaces over a field F. Let $B=\left\{b_{1}, b_{2}, \ldots \ldots \ldots . . b_{n}\right\}$ be a basis of V and $B^{\prime}=\left\{b_{1}^{\prime}, b_{2}^{\prime}, \ldots \ldots \ldots . ., b_{n}^{\prime}\right\}$ be a set of vectors in V^{\prime}. Let $t: V \rightarrow V^{\prime}$ be a linear transformation s.t.

$$
t\left(b_{i}\right)=b_{i}^{\prime}, i=1,2 \ldots \ldots . . n \text { then show that is an isomorphismiff the set } B^{\prime} \text { is a basis of } B^{\prime} .10
$$

b. Let V and V^{\prime} be finite dimensional vector space over a field F and $t: V \rightarrow V^{\prime}$ be a linear transformation then prove that $\operatorname{ker}\left(\mathrm{t}^{*}\right)=\mathrm{A}(\mathrm{t}(\mathrm{V}))$, Hence show that t and t^{*} have the same rank where t^{*} is the dual map of t and $A(t(V))$ is the annihilator of the image sub-space $t(V)$.

UNIT-III

5a. Prove that every finite extension of a field is an algebraic extension. But the converse is not necessarily true.
b. Define normal field extension .Let K be a normal extension of afield F and L is an intermediate field such that $F \subset L \subset K$, then prove that K is also a normal extension of L .

6a. Prove that the order of the Galois group $G(K / F)$ is equal to the degree of K over F ie.

$$
\begin{equation*}
O[G(K / F)]=[K: F] . \tag{10}
\end{equation*}
$$

b. Show that the Galois Group of : $f(x)=x^{4}+1 \in Q[x]$ is the Klein's four group.

UNIT-IV

7a. A square matrix A over a field F is invertible iff it can be written as a product of elementary matrices. 10
b. Let t be a linear transformation of a finite dimensional vector space to itself .Then Show that the matrix A representing t is diagonal with the eigen values of t as diagonal entries iff A is relative to a basis of V consisting of eigenvectors of t .

8a. An nxn square matrix A is an invertible matrix over F iff $\operatorname{Det}(A) \neq 0$
b. Similar matrices have the same characteristic polynomial and hence the same eigen values. 10

UNIT-V

9a. Let V be an inner product space and $u, v \in V$ s.t. $\|u\|=\|v\|=1$ then show that : $|\langle u, v\rangle| \leq 1$ Hence or otherwise show that for arbitrary vectors $u, v \in V$ we have $|\langle u, v\rangle| \leq\|u\|\|v\|$
b. If $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots \ldots . \mathrm{u}_{\mathrm{n}}\right\}$ is any finite orthonormal set in an inner product space V and v is any vector in V ,then show that $\sum_{i=1}^{n}\left|<v, u_{i}>\right|^{2} \leq\|v\|^{2}$

10a. State and prove principle axis thorem. 10
b. Let V and V^{\prime} be inner product spaces. Then a linear transformation $t: V \rightarrow V^{\prime}$ is orthogonal iff $\|t(u)\|=\|u\|$ forall $u \in V$.

