Biyani Girls college, Jaipur

Model Paper-B (M.Sc. I)

Subject:Mathematics

Paper : I(Abstract Algebra)

Max Marks:100

Max Time: 2:30 hrs

Attempt any five questions in all selecting atleast one question from each unit.

<u>UNIT-I</u>

1.a Let H be a subgroup of G and K be a normal subgroup of G then show that $:\frac{HK}{K} \cong \frac{H}{H \cap K}$

Further suppose K_1 is some other normal subgroup of G s.t. $H \cap K = H \cap K_1$ then $\frac{HK}{K} \cong \frac{HK_1}{K_1}$.10

b. A group G is an internal direct product of subgroup H₁,H₂.....H_n iff

(i) $G = H_1, H_2, \dots, H_n$ (ii) H_1, H_2, \dots, H_n are all normal subgroup of G and

 $(iii) H_i \cap (H_1 H_2 \dots H_{i-1} H_{i+1} \dots H_n) = \mathbf{e}$

2a.Let R be an Euclidian ring and $a_o \in R$. Then prove that the principal ideal $A = \langle a_o \rangle$ of R is maximal ideal of R Iff a_o is a prime element of R. 10

b. Let M be an R- module and let N and K be sub module of M with $N \subseteq K$ then prove that

$$(M/N)|(K/N) \cong M/K.$$
 10

UNIT-II

3a. Let V be a finite dimensional vector space over a field F and W be any subspace of V. If A(W) denotes annihilator of W ,then prove that: dim $A(W) = \dim V - \dim W$. 10

b. Let M be an R-Module .Then show that M is the direct sum of its sub modules N_1, N_2, \dots, N_K Iff (*i*) $M = N_1 + N_2 + \dots + N_K$ (*ii*) $N_i \cap (N_1 + N_2 + \dots + N_{i-1} + N_{i+1} + \dots + N_K) = \left\{ \overline{0} \right\}$ for all $i = 1, 2, \dots, k$ 10

4a. Let V and V' be vector spaces over a field F. Let $B = \{b_1, b_2, \dots, b_n\}$ be a basis of V and $B' = \{b'_1, b'_2, \dots, b'_n\}$ be a set of vectors in V'. Let $t : V \to V'$ be a linear transformation s.t.

 $t(b_i) = b'_i$, $i = 1, 2, \dots, n$ then show that t is an isomorphism iff the set B' is a basis of B'. 10

b. Let V and V' be finite dimensional vector space over a field F and $t: V \to V'$ be a linear transformation then prove that ker (t^*) = A(t(V)), Hence show that t and t^{*} have the same rank where t^{*} is the dual map of t and A(t(V)) is the annihilator of the image sub-space t(V). 10

UNIT-III

5a. Prove that every finite extension of a field is an algebraic extension. But the converse is not necessarily true.10

b. Define normal field extension .Let K be a normal extension of afield F and L is an intermediate field such that $F \subset L \subset K$, then prove that K is also a normal extension of L. 10

6a. Prove that the order of the Galois group G(K/F) is equal to the degree of K over F ie.

$$O[G(K/F)] = [K:F].$$
10

b. Show that the Galois Group of : $f(x) = x^4 + 1 \in Q[x]$ is the Klein's four group. 10

UNIT-IV

7a. A square matrix A over a field F is invertible iff it can be written as a product of elementary matrices. 10

b. Let t be a linear transformation of a finite dimensional vector space to itself .Then Show that the matrix A representing t is diagonal with the eigen values of t as diagonal entries iff A is relative to a basis of V consisting of eigenvectors of t.

8a. An nxn square matrix A is an invertible matrix over F iff $Det(A) \neq 0$

b. Similar matrices have the same characteristic polynomial and hence the same eigen values. 10

UNIT-V

10

9a. Let V be an inner product space and $u, v \in V$ s.t. ||u|| = ||v|| = 1 then show that $|\langle u, v \rangle| \le 1$ Hence or otherwise show that for arbitrary vectors $u, v \in V$ we have $|\langle u, v \rangle| \le ||u|| ||v||$ 10

b. If $\{u_{1,}u_{2,}\dots,u_{n}\}$ is any finite orthonormal set in an inner product space V and v is any vector in V ,then show that $\sum_{i=1}^{n} |\langle v, u_{i} \rangle|^{2} \le ||v||^{2}$ 10

10a. State and prove principle axis thorem. 10

b. Let V and V be inner product spaces. Then a linear transformation $t: V \to V$ is orthogonal iff

$$\|t(u)\| = \|u\| \text{ for all } u \in V.$$
10