
 

M.Sc (P) Mathematics 

Paper-IV , set A 

Differentinl Geometry   

Time: 2:30                                                                          Maximum Marks: 100 

                                                               Unit I                                   

1.  (a) Find the equation of osculating plane of the curve given by

).2sin,sincos,cossin( tctbtatbtar  . 

(b)   if the tangent and the binomial at a point of a curve make angle ,  

Respectively with a fixed direction prove that  
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2.  (a)  Find the equations of the principal normal and of the osculating plane at any point 

of the curve given by the equation    

  .2sin3sin4,cos4
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               (b)   Find  the spherical indicatrix of the tangent, binomials and principal normal of the circular     

 Helix  .cotsin,cos azandayax  

 

                                                        Unit II 

3.   (a) Prove that the metric of a surface is invariant under parametric transformation. 

(b)       Derive the Weingraten equations . 

4.  (a)  Find the fundamental magnitudes of general surface of revolution  . 

(b) show that the parametric curves on the sphere 

.cossinsin,cossin uazandvuayvuax  

                                                                     Unit-III 

5.    (a) Derive the radius of curvature of any normal section at an umbilic on the surface Z= 

f(x,y). 

(b) Find the principal sections and the principal curvatures of the surface x = a(u+v), 

Y=b(u-v), z = uv. 

      6.    Derive the principal radii and lines of curvature through a point of the surface Z= f(x,y). 

 

 

 



                                                                     Unit-IV 

7 (a) Find that the necessary and sufficient condition for a curve u =u(t), v = v(t) to be 

geodesic on a surface r= r(u,v  )is 
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  (b)  Find the geodesic on a surface  of revolution )(,sin,cos ufzuyux  

      8.     (a)  if Ai is an arbitrary contravariant vector and CijA
iAj is an invariant prove that Cij +Cji is  

  A covariant tensor of second order. 

             (b)      State and prove that quotient law of tensors 

.           

                                                                        Unit -V 

9. (a)  define Christoffel symbols of the first and second kind prove that   
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     (b) if 0
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      10 .(a)  Find the metric of a Euclidean space referred to spherical coordinates. 

(b)  Define geodesic coordinate system . Show that it is always possible to choose n 

coordinate system which is geodesic in nature at particular point P0.  


