M.Sc (P) Mathematics
 Paper-IV , set A
 Differentinl Geometry

Time: 2:30
Maximum Marks: 100

Unit I

1. (a) Find the equation of osculating plane of the curve given by
$r=(a \sin t+b \cos t, a \cos t+b \sin t, c \sin 2 t) .$.
(b) if the tangent and the binomial at a point of a curve make angle θ, ϕ

Respectively with a fixed direction prove that $\frac{\sin \theta}{\sin \phi} \frac{d \theta}{d \phi}= \pm \frac{\kappa}{\tau}$
2. (a) Find the equations of the principal normal and of the osculating plane at any point of the curve given by the equation

$$
x=4 a \cos ^{3} \theta, y=4 a \sin ^{3} \theta \text { and } z=3 c \sin 2 \theta .
$$

(b) Find the spherical indicatrix of the tangent, binomials and principal normal of the circular Helix $x=a \cos \theta, y=a \sin \theta$ and $z=a \theta \cot \alpha$.

Unit II

3. (a) Prove that the metric of a surface is invariant under parametric transformation.
(b) Derive the Weingraten equations .
4. (a) Find the fundamental magnitudes of general surface of revolution .
(b) show that the parametric curves on the sphere
$x=a \sin u \cos v, y=a \sin u \sin v$ and $z=a \cos u$.

Unit-III

5. (a) Derive the radius of curvature of any normal section at an umbilic on the surface $\mathrm{Z}=$ $f(x, y)$.
(b) Find the principal sections and the principal curvatures of the surface $x=a(u+v)$, $Y=b(u-v), z=u v$.
6. Derive the principal radii and lines of curvature through a point of the surface $Z=f(x, y)$.

Unit-IV

7 (a) Find that the necessary and sufficient condition for a curve $u=u(t), v=v(t)$ to be geodesic on a surface $r=r(u, v)$ is $U \frac{\partial T}{\partial \dot{v}}-V \frac{\partial T}{\partial \dot{u}}=0$
(b) Find the geodesic on a surface of revolution $x=u \cos \theta, y=u \sin \theta, z=f(u)$
8. (a) if A^{i} is an arbitrary contravariant vector and $C_{i j} A^{i} A^{j}$ is an invariant prove that $C_{i j}+C_{j i}$ is A covariant tensor of second order.
(b) State and prove that quotient law of tensors

Unit -V

9. (a) define Christoffel symbols of the first and second kind prove that

$$
\frac{\partial g_{i k}}{\partial \dot{x^{j}}}=[i j, k]+[k j, i]
$$

(b) if $A_{i j}=B_{i, j}-B_{j, i}$ then prove that $A_{i j, k}+A_{j k, i}+A_{k i, j}=0$

10 .(a) Find the metric of a Euclidean space referred to spherical coordinates.
(b) Define geodesic coordinate system. Show that it is always possible to choose n coordinate system which is geodesic in nature at particular point P_{0}.

