M.Sc (P) Mathematics
 Paper-III, set A
 Differential equation

Unit I

1. (a) solve $2 y \frac{d^{3} y}{d x^{3}}+2\left(y+3 \frac{d y}{d x}\right) \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=2$
(b) Solve $\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{3}=0$.
2. (a) Solve $\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=0$
(b) Solve $r=a^{2} t$ by Monge's method.

Unit 2

3. (a) Reduce the equation $\frac{\partial^{2} z}{\partial x^{2}}=x^{2}\left(\frac{\partial^{2} z}{\partial x^{2}}\right)$ to canonical form and classify character.
(b) Solve the two dimensional heat conduction equation $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\frac{1}{k}\left(\frac{\partial z}{\partial t}\right)$
by the method of separation of variables.
4. (a) Find the eigenvalues and eigenfunction of the Sturm Liouville problem:
$\frac{d}{d x}\left[x \frac{d y}{d x}\right]+\frac{\lambda}{x} y=0, y(1)=0$ and $y\left(e^{\pi}\right)=0$
(b) State orthogonal property of eigenfunctions prove that the eigenvalues of Sturm Liouville system are real

Unit-3

5. (a) Establish Euler lagrange differential equation for an extremal of a function of the
form $I[y(x)]=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x$;
(b) Determine the extremal of the functional $I[y(x)]=\int_{-1}^{1}\left(\frac{1}{2} \mu y^{\prime \prime 2}+\rho y\right) d x$;

That satisfied the boundary conditions $y(-1)=0, y^{\prime}(-1)=0, y(1)=0, y^{\prime}(1)=0$
6. (a) Find the solution in series of the following differential equation

$$
\left(x-x^{2}\right) y_{2}+(1-5 x) \frac{d y}{d x}-4 y=0
$$

(b) Show that the shortest line between any two points on a cylinder is a helix.

Unit-4

7. (a) Write the integral representation for ${ }_{2} F_{1}$ with the condition of validity and obtain from it the following: (i) Gauss Theorem (ii) Kummers Theorem (iii) vander modes theorem.
(b) Prove That $(1-x) F=F(-a)-\left(\frac{c-b}{c}\right) x F(c+)$ whrer F stands for gauss hypergeometric function ${ }_{2} F_{1}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x})$.
8. (a) Prove that $\int_{-1}^{1} x^{2} p_{n+1}(x) p_{n-1}(x) d x=\frac{2 n(n+1)}{(2 n-1)(2 n+1)(2 n+3)}$.
(b) Establish: $n Q_{n+1}^{\prime}(x)+(n+1) Q_{n-1}^{\prime}(x)=(2 n+1) x Q_{n}{ }^{1}(x)$

Unit -5

9. (a) if n is an integer, show that:
$J_{n}(x)=\frac{1}{x} \int_{0}^{\pi} \cos (n \phi-x \sin \phi) d \phi$
(b) Prove that $P_{n}(x)=\frac{2}{n!\sqrt{\pi}} \int_{0}^{\infty} e^{-t^{2}} t^{n} H_{n}(x t) d t$

10 .(a) prove that $L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}\left(x^{n} e^{-x}\right)}{d x^{n}}$
(b) state and prove orthogonal property of associated Laguerre's polynomoial.

