
 

M.Sc (P) Mathematics 

Paper-III , set A 

Differential equation   

Time: 2:30                                                                          Maximum Marks: 100 

                                                               Unit I                                   
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(b)    Solve r = a2 t by Monge’s method.                                                     

                                                  Unit 2 

3. (a) Reduce the equation 
2

2
2

2

2

x

z
x

x

z
 to canonical form and classify character. 

(b) Solve the  two dimensional heat conduction equation
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by the method of separation of variables. 

4. (a) Find the eigenvalues and eigenfunction of the Sturm Liouville problem: 
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      (b) State orthogonal property of eigenfunctions prove that the eigenvalues of Sturm       

Liouville system are real 

                                                                           Unit-3 

 

5. (a)  Establish Euler lagrange differential equation for an extremal of a function of the 

form ;),,()]([
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(b)  Determine the extremal of the functional
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6.    (a) Find the solution in series of the  following differential equation 
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             (b) Show that the shortest line between any two points on a cylinder is a helix. 

                                                                       Unit-4 

7. (a) Write the integral representation for 
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F with the condition of validity and obtain 

from it the following: (i) Gauss Theorem  (ii) Kummers Theorem (iii) vander modes 

theorem. 
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       8.  (a)  Prove that
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                                                                      Unit -5 

9. (a)  if n is an integer , show that: 
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               (b) Prove that 
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      10 .(a)  prove that 
n

xnnx

n dx

exd

n

e
xL

)(

!
)(  

(b) state and prove orthogonal property of associated Laguerre’s polynomoial. 


