

M.Sc. (Prev.) Mathematics Model Paper - A Paper -I (Real Analysis and Topology)

Time allowed : 3 Hrs

Max. Marks: 100

Note : Attempt any five question in all. Select at least one from each unit. Each question carry equal marks

<u>UNIT -I</u>

- Q.1(a) Define outer measure of a set. Prove that the outer measure of an interval is its length.
 - (b) Prove that every interval is measurable
- Q.2(a) Define equivalent functions. If f is a measurable function defined on a measurable set E and if a function g is equivalent to f, then show that g is also measurable function on E
 - (b) Show that a sequence of measurable functions converging to a measurable function almost everywhere converges to the some function in measure.

<u>UNIT -II</u>

Q.3(a) Let f be a continuous real valued function defined on [0,1]. Then prove that for every e>0, thee exists a polynomial function p(x), *s*, *t*

 $f(x) - p(x) / \langle E \text{ for all } x \in [0,1]$

 ∞

(b) Let f be a bounded measurable function on a set E and let $f(x) \ge 0$ *a.e* on E. If $\int_E F(x) dx = 0$, then prove that f(x) = 0 *a.e.* on E.

or

Q.4(a) Let *f* be summable function on a set E. Then prove that for a given \in > 0, there exists a δ > 0 s.t

 $\int_{\in} |f(x)| \, dx \, < \in$

(b) Prove that the series $\sum_{i=1}^{\infty}$ of pair wise orthogonal elements in L_2 is convergent iff the series of real numbers $\sum_{i=1}^{\infty} ||f_i||^2$

<u>UNIT -III</u>

- Q.5(a) Prove that L_p -space is complete.
 - (b) Let 1 p</sup> and g ∈ L^q then prove that ∫ ∈ f(x)g(x)dx ≤ ||f||_p ||g||_q
- Q.6 (a) Show that a subset A of topological space (x, τ) is open iff A is a neighborhood of each point in it.
 - (b) Let (x, τ) be a topological space and $Y \subset X$. Then prove that the collection $\tau_y = \{G \cap Y/G \in \tau\}$ is topology on Y.

<u>UNIT -IV</u>

- Q.7(a) If (x, τ_1) and (x, τ_2) are any two topological spaces then prove that the mapping $f: X \to Y$ is continuous on X iff for every subset $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$, where \overline{A} denotes the closure of A.
 - (b) Define T_1 space. Prove that a topological space (x, τ) is a T_1 space. Iff every singleton subset $\{x\}$ of X is a closed set.

0r

- Q.8(a) Prove that a topological space (x, τ) is a regular space iff given a point p in X with $p \in G$, $G \in \tau$, there exist an open set V such that $p \in V \subset \overline{V}$ where \overline{V} denotes the closure of V
 - (b) Prove that the product of two Hausdroff space is Hausdroff space .

UNIT -V

- Q.9(a) Prove that a compact Hausdroff space is normal
 - (b) Define a locally compact space. Prove that every open continuous image of a locally compact space is locally compact.

0r

- Q.10(a) Prove that the union of any family of connected sets having a non empty intersection is connected.
 - (b) Prove that every open subspace of a locally connected topological space is locally connected

Time allowed : 3 Hrs

Max. Marks: 100

<u>UNIT -I</u>

- Q.1(a) Define an algebra of set. Show that for any collection α of subset of a set X, there is a smallest algebra A* containing α .
 - (b) Let A be any set and $\{E_i / i \in \underline{n}\}$ be a finite class of disjoint measurable sets then prove that

$$m^* \left\{ A \cap \begin{pmatrix} n \\ \cup E_i \end{pmatrix} \right\} = \sum_{i=1}^n m^* (A \cap E_i)$$

0r

- Q.2(a) Let $\langle f_n \rangle$ be a sequence of measurable function which converges in measure to the function f then prove that their exist a subsequence of $\langle f_n \rangle$ which also converges two f almost everywhere.
 - (b) Let f be a measurable function finite almost everywhere defined on a closed interval E = [a, b]. then prove that for all $\sigma > 0$ and $\epsilon > 0$, there exist a continuous function ϕ defined on E such that

$$m\left\{x \in E / |f(x) - \phi(x)| \ge \sigma\right\} < \epsilon$$

<u>UNIT -II</u>

- Q.3(a) Define the lebesgue integral for a bounded measurable function. Prove that every bounded and measurable function defined on a measurable set E is lebesgue integrable on E.
 - (b) Let $\langle f_n \rangle$ be a sequence of measurable function Ψ defined on a measurable set E such that $|f_n(x)| < \Psi(x)$ for all $x \in E$ and for all $\in N$ where $\Psi(x)$ is an integrable function over E. If $\langle f_n \rangle$ converges in measure to the measureable function f on E then prove that

$$\lim_{n\to\infty}\int_E f_n(x)dx = \int_E f(x) \ dx$$

- Q.4(a) Show that space of square summable function L_2 is a normed linear space.
 - (b) Prove that the Fourier series of any function $f \in L_2$ converges in norm prove that it converges to f iff

$$\|f\|^2 = \sum_{i=1}^{\infty} a_i^2$$

Where a_i is the fourier coefficient of the function f.

<u>UNIT- III</u>

- Q.5(a) Define L^p space. Prove that the L^p space is a linear space
 - (b) Prove that a normed linear space L^p space $1 \le p < \infty$ is complete and hence a banach space.

0r

- Q.6(a) Define accumulation point. Prove that a subset A of a topological space (x, τ) is closed iff $A' \subset A$, A' being the derived set of A.
 - (b) Let (x, τ) be a topological space and let $A, B \subset X$. Then prove that (i) $A \subset B \Rightarrow \overline{A} \subset \overline{B}$ (ii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$ (iii) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$ Where \overline{A} denotes the closure of the set A.

<u>UNIT -IV</u>

- Q.7(a) Define continuous mapping. Prove that if (x, τ_1) and (y, τ_2) are two topological spaces then the mapping $f: X \to Y$ is continuous on X iff inverse image of each closed set in Y is closed in X.
 - (b) Define T_2 space. Prove that every T_2 space is a T_1 space but the converse is not necessarily true.

0r

- Q.8(a) Prove that a topological space (x, τ) is a normal space iff for any closed set F and open set G containing F, there exist an open set V such that $F \subset V \subset \overline{V} \subset G$.
 - (b) Define a filter on a non empty set X and prove that the intersection of an arbitrary family of filters on X is a filter on X.

<u>UNIT -V</u>

- Q.9(a) Define compact space and prove that every compact subset of a Hausdorff space is closed.
 - (b) Prove that every open continuous image of a locally compact space is locally compact.

Q.10(a)Define connected space. Prove that a subspace Y of a topological space (x, τ) is connected iff for a every pair open subset A and B of X such that $Y \subset A \cup B$ and $Y \cap A, Y \cap B$ are non empty, the set $Y \cap A \cap B$ is non empty.

(b)Define a component of a topological space and prove that every component locally connected space an open set.